Приказ о списании задолженности с истекшим сроком давности образец

Кредиты

Степени с натуральными показателями: понятие квадрата и куба числа

Сначала сформулируем базовое определение степени с натуральным показателем. Для этого нам понадобится вспомнить основные правила умножения. Заранее уточним, что в качестве основания будем пока брать действительное число (обозначим его буквой a), а в качестве показателя – натуральное (обозначим буквой n).

Определение 1

Степень числа a с натуральным показателем n – это произведение n-ного числа множителей, каждый из которых равен числу а. Записывается степень так: an, а в виде формулы ее состав можно представить следующим образом: Степени с натуральными показателями: понятие квадрата и куба числа

Например, если показатель степени равен 1, а основание – a, то первая степень числа a записывается как a1. Учитывая, что a – это значение множителя, а 1 – число множителей, мы можем сделать вывод, что a1=a.

В целом можно сказать, что степень – это удобная форма записи большого количества равных множителей. Так, запись вида 8·8·8·8 можно сократить до 84. Примерно так же произведение помогает нам избежать записи большого числа слагаемых (8 8 8 8=8·4); мы это уже разбирали в статье, посвященной умножению натуральных чисел.

Как же верно прочесть запись степени? Общепринятый вариант – «a в степени n».  Или можно сказать «n-ная степень a» либо «an-ной степени». Если, скажем, в примере встретилась запись 812, мы можем прочесть «8 в 12-й степени», «8 в степени 12» или «12-я степень 8-ми».

Вторая и третья степени числа имеют свои устоявшиеся названия: квадрат и куб. Если мы видим вторую степень, например, числа 7(72), то мы можем сказать «7 в квадрате» или «квадрат числа 7». Аналогично третья степень читается так: 53 – это «куб числа 5» или «5 в кубе». Впрочем, употреблять стандартную формулировку «во второй/третьей степени» тоже можно, это не будет ошибкой.

Пример 1

Разберем пример степени с натуральным показателем: для 57 пятерка будет основанием, а семерка – показателем.

В основании не обязательно должно стоять целое число: для степени (4,32)9 основанием будет дробь 4,32, а показателем – девятка. Обратите внимание на скобки: такая запись делается для всех степеней, основания которых отличаются от натуральных чисел.

Например: 123, (-3)12, -2352, 2,4355, 73.

Для чего нужны скобки? Они помогают избежать ошибок в расчетах. Скажем, у нас есть две записи:(−2)3 и −23. Первая из них означает отрицательное число минус два, возведенное в степень с натуральным показателем три; вторая – число, соответствующее противоположному значению степени 23.

Иногда в книгах можно встретить немного другое написание степени числа – a^n (где а – основание, а n — показатель). То есть 4^9 – это то же самое, что и 49. В случае, если n представляет собой многозначное число, оно берется в скобки. Например, 15^ (21), (−3,1) ^ (156). Но мы будем использовать обозначение anкак более употребительное.

О том, как вычислить значение степени с натуральным показателем, легко догадаться из ее определения: нужно просто перемножить a n-ное число раз.  Подробнее об этом мы писали в другой статье.

Понятие степени является обратным другому математическому понятию – корню числа. Если мы знаем значение степени и показатель, мы можем вычислить ее основание. Степень обладает некоторыми специфическими свойствами, полезными для решения задач, которые мы разобрали в рамках отдельного материала.

Инвентаризация долговых обязательств в казенном учреждении

Списание задолженности возможно только спустя три года с момента формирования долга. По истечению срока давности собираются документы, предусмотренные регламентом, выпускается приказ от имени руководителя с указанием причины образования просроченной задолженности и выполняются соответствующие проводки.

 До списания нужно подготовить перечень документов:

  • первичная документация, утверждающая образование суммы долга;
  • документация по инвентаризации кредиторов;
  • справка с указанием даты и источника формирования задолженности;
  • приказ директора предприятия о списании, где указана причина такого решения (истекли три года давности).
Читайте также  Официальный сайт Сбербанка России

Невостребованная задолженность ликвидируется в счет доходов учреждения по прошествии 3 лет с момента формирования долгового обязательства. В то же время происходит учитывание этой суммы на забалансовом счете 20.

Рассмотрим проводки по списанию кредиторской задолженности в бюджетном учреждении. Списание отложенной оплаты труда: Дт 2.205.31.00  Кт 2.401.10.173.

Приказ о списании задолженности с истекшим сроком давности образец

Дт забалансового счета 20 на такую же сумму. Если в течение трех лет не произойдет востребование долга, тогда происходит списание кредиторской задолженности в бюджетном учреждении с истекшим сроком исковой давности.

проводки по списанию кредиторской задолженности в бюджетном учреждении

Долг, невостребованный кредиторами, может представлять собой суммы не предъявленных кредиторами требований, вытекающих из условий договора, в т.ч. суммы, не подтвержденные по результатам инвентаризации кредитором

Дебиторская и кредиторская задолженность — неотъемлемая часть активов и обязательств компании, и именно поэтому подлежит обязательной инвентаризации. Данный способ контроля в рамках компании зачастую недооценивают, и проводят «спустя рукава» исключительно формальным методом, что может обернуться непоправимым ущербом для компании.

К проведению инвентаризации необходимо подойти с особой аккуратностью и тщательностью. Именно инвентаризация дебиторской и кредиторской задолженности позволяет своевременно выявлять сомнительную и безнадежную задолженность. По итогам проверки проводятся работы в управленческом учете с дебиторкой и формируется резерв по сомнительным долгам.

Инвентаризация дебиторской и кредиторской задолженности в казенном учреждении назначается в следующих случаях:

  • составление годовой отчетности;
  • изменения МОЛ;
  • стихийные ситуации, пожары и прочие экстремальные происшествия;
  • ликвидация учреждения.
списание просроченной кредиторской задолженности проводки бюджет

Инвентаризация финансовых обязательств в бюджетном учреждении может быть как плановой — в соответствии с требованиями законодательства, так и инициированной — по решению руководства

Помимо обязательной предусмотренной законодательством инвентаризации, организация имеет право проводить добровольную инвентаризацию в случае необходимости.

Приказ о списании задолженности с истекшим сроком давности образец

Назначенная по инициативе фирмы или законодательством инвентаризация преследует одни и те же цели:

  • выявление задолженности, которая вероятнее всего не будет погашена, либо не будет оплачена в срок;
  • определение суммы общего долга.

Перед началом инвентаризации нужно определить, насколько большой объем работы предстоит проделать. Требуется выявить номера счетов, которые необходимо будет проверить и проанализировать.

Инвентаризация, инициируемая решением предприятия, подразумевает, что счета могут выбираться на усмотрение организации. После выпускается приказ с указанием комиссии, наименованием и списком счетов и кредиторов, сроков и перечнем необходимой документации.

инвентаризация дебиторской и кредиторской задолженности в казенном учреждении

Для проведения инвентаризации в казенном учреждении создается постоянно действующая инвентаризационная комиссия

Задолженность в учете должна быть подтверждена первичной документацией, приказами и прочей документацией. В такой ситуации данные учета организации не обязаны быть одинаковыми с информацией контрагентов. Потому при проведении инвентаризации формирование и сверка акта с контрагентами не обязательна.

Но несмотря на это, регулярная сверка с учетом контрагентов все же может оказаться весьма полезна, поскольку позволит выявить ошибки в учете, а так же напомнить дебиторам об их долгах. При этом нельзя забывать, что акт сверки — это не первичный документ и на основании только акта нельзя производить записи в учете.

Напомним, что одна из основных задач бухгалтерского учета — это формирование полной и достоверной информации о деятельности организации и ее имущественном положении.

Наличие в организации дебиторской или кредиторской задолженности, по которым истек срок исковой давности, искажает реальную картину об имуществе и обязательствах организации. Ведь дебиторка с истекшим сроком исковой давности – это долг, который организация уже не сможет взыскать в судебном порядке. И если должник не захочет вернуть этот долг самостоятельно (что маловероятно, ведь на это у него уже было 3 года), такая задолженность становится нереальной для взыскания, а значит, должна формировать убытки кредитора.

То же относится и к кредиторской задолженности, по которой срок исковой давности истек. У кредитора уже нет возможности взыскать долг в принудительном порядке, следовательно, должник может такой долг уже не гасить.

Требование о списании задолженности по срокам исковой давности содержится в п.п. 77,78 Положения по ведению бухгалтерского учета и бухгалтерской отчетности в РФ (утв. Приказом Минфина от 29.07.1998 № 34н).

Указывается, что дебиторская или кредиторская задолженность, по которым срок исковой давности истек, списываются по каждому обязательству на основании инвентаризации, письменного обоснования и приказа руководителя. Списанные долги относятся на финансовые результаты организации в составе прочих доходов (при списании кредиторки) и прочих расходов (при списании дебиторской задолженности).

Читайте также  Помощь в получении кредита или как работают кредитные мошенники

Списание дебиторской и кредиторской задолженности возможно и раньше срока исковой давности, если такие долги будут признаны нереальными для взыскания (погашения). Это возможно, к примеру, при исключении должника из ЕГРЮЛ в случае ликвидации.

Дебет счетов 60 «Расчеты с поставщиками и подрядчиками», 70 «Расчеты с персоналом по оплате труда», 76 «Расчеты с разными дебиторами и кредиторами», 67 «Расчеты по долгосрочным кредитам и займам» и др. – Кредит счета 91 «Прочие доходы и расходы», субсчет «Прочие доходы»

Дебет счета 91, субсчет «Прочие расходы» — Кредит счетов 62 «Расчеты с покупателями и заказчиками», 71 «Расчеты с подотчетными лицами», 76 и др.

Если дебиторская задолженность списывается за счет средств созданного ранее резерва, вместо счета 91 дебетуется счет 63 «Резервы по сомнительным долгам».

При этом списание дебиторской задолженности в связи с неплатежеспособностью должника не приводит к полному аннулированию задолженности. Такой долг должен числиться за балансом в течение 5 лет с момента списания задолженности на случай ее взыскания в случае изменения имущественного положения должника (абз. 2 п. 77 Приказа Минфина от 29.07.1998 № 34н).

Дебет счета 007 «Списанная в убыток задолженность неплатежеспособных дебиторов»

Что такое степени с целым показателем

В показателях степени могут стоять не только натуральные числа, но и вообще любые целые значения, в том числе отрицательные и нули, ведь они тоже принадлежат к множеству целых чисел.

Определение 2

Степень числа с целым положительным показателем можно отобразить в виде формулы: Что такое степени с целым показателем.

При этом n – любое целое положительное число.

Однако такое доказательство не подходит для нуля в нулевой степени. Для этого нам нужно другое свойство степеней – свойство произведений степеней с равными основаниями. Оно выглядит так: am·an=am n .      

Если n у нас равен 0, то am·a0=am (такое равенство также доказывает нам, чтоa0=1). Но если а также равно нулю, наше равенство приобретает вид 0m·00=0m, Оно будет верным при любом натуральном значении n, и неважно при этом, чему именно равно значение степени 00, то есть оно может быть равно любому числу, и на верность равенства это не повлияет. Следовательно, запись вида 00 своего особенного смысла не имеет, и мы не будем ему его приписывать.

При желании легко проверить, что a0=1 сходится со свойством степени (am)n=am·n при условии, что основание степени не равно нулю. Таким образом, степень любого отличного от нуля числа с нулевым показателем равна единице.     

Пример 2

Разберем пример с конкретными числами: Так, 50  — единица, (33,3)0=1, -4590=1, а значение 00не определено.

После нулевой степени нам осталось разобраться, что из себя представляет степень отрицательная. Для этого нам понадобится то же свойство произведения степеней с равными основаниями, которое мы уже использовали выше: am·an=am n.

Приказ о списании задолженности с истекшим сроком давности образец

Введем условие: m=−n, тогда a не должно быть равно нулю. Из этого следует, что a−n·an=a−n n=a0=1. Выходит, что an и a−n у нас являются взаимно обратными числами.

В итоге a в целой отрицательной степени есть не что иное, как дробь   1an.

Такая формулировка подтверждает, что для степени с целым отрицательным показателем действительны все те же свойства, которыми обладает степень с натуральным показателем (при условии, что основание не равно нулю).

Пример 3

Степень a с целым отрицательным показателем n можно представить в виде дроби 1an. Таким образом, a-n=1an при условии a≠0  и n – любое натуральное число.

Порядок списания невостребованной кредиторской задолженности

Если по каким-либо причинам выплата задолженности оказывается невозможной (к примеру, прекращение существования контрагента) при наличии соответствующей записи в реестре ЕГРЮЛ, то данный долг необходимо списать.

Для списания просроченной кредиторской задолженности в бюджете используются проводки по счету 0.401.10.173 в регламенте пункт 150 инструкции 174н, пункт 178 инструкции 183н и пункт 167 инструкции 162н.

Невостребованная кредиторами задолженность в бюджетном учреждении списывается в следующем порядке: с забаланса, после инвентаризации, подписания акта по регламенту учетной политики. На основании этих процедур долг относят на забалансовый счет 20.

Дт 2.302.25.000 Кт 2.401.10.173 — списание невостребованной задолженности.

Читайте также  Почему важно соблюдать законы? Зачем нужен закон и порядок в мире?

Дт 20 – отнесение задолженности за баланс.

порядок списания задолженности учреждения невостребованной кредиторами

Порядок списания с баланса задолженности, не востребованной кредиторами, устанавливается приказом об учетной политике учреждения

Что такое степени с иррациональным и действительным показателем

списание кредиторской задолженности в бюджетном учреждении с истекшим сроком исковой давности

Мы разобрали случаи, когда в показателе степени стоит целое число. Однако возвести число в степень можно и тогда, когда в ее показателе стоит дробное число. Это называется степенью с рациональным показателем. В этом пункте мы докажем, что она обладает теми же свойствами, что и другие степени.

Что такое рациональные числа? В их множество входят как целые, так и дробные числа, при этом дробные числа можно представить в виде обыкновенных дробей (как положительных, так и отрицательных). Сформулируем определение степени числа a с дробным показателем m/n, где n – натуральное число, а m – целое.

У нас есть некоторая степень с дробным показателем amn.  Для того, чтобы свойство степени в степени выполнялось, равенство amnn=amn·n=am должно быть верным.

Учитывая определение корня n-ной степени и что amnn=am, мы можем принять условие amn=amn, если amn имеет смысл при данных значениях m, n и a.

Приведенные выше свойства степени с целым показателем будут верными при условии amn=amn.

Основной вывод из наших рассуждений таков: степень некоторого числа a с дробным показателем m/n – это корень n-ой степени из числа a в степени m. Это справедливо в том случае, если при данных значениях m, n и a выражение amn сохраняет смысл.

Далее нам необходимо определить, какие именно ограничения на значения переменных накладывает такое условие. Есть два подхода к решению этой проблемы.

amn=amn

Для степени с нулевым основанием это положение также подходит, но только в том случае, если ее показатель – положительное число.

Степень с нулевым основанием и дробным положительным показателем m/n можно выразить как

0mn=0mn=0 при условии целого положительного m и натурального n.

При отрицательном отношении mn{amp}lt;0 степень не определяется, т.е. такая запись смысла не имеет.

как списать просроченную кредиторскую задолженность прошлых лет проводки пример бюджет

Отметим один момент. Поскольку мы ввели условие, что a больше или равно нулю, то у нас оказались отброшены некоторые случаи.

Выражение  amn иногда все же имеет смысл при некоторых отрицательных значениях a и некоторых m. Так, верны записи (-5)23, (-1,2)57, -12-84, в которых основание отрицательно.

2. Второй подход – это рассмотреть отдельно корень  amn с четными и нечетными показателями. Тогда нам потребуется ввести еще одно условие: степень a, в показателе которой стоит сократимая обыкновенная дробь, считается степенью a, в показателе которой стоит соответствующая ей несократимая дробь. Позже мы объясним, для чего нам это условие и почему оно так важно. Таким образом, если у нас есть запись am·kn·k, то мы можем свести ее к amn и упростить расчеты.

Если n – нечетное число, а значение m – положительно, a – любое неотрицательное число, то  amn имеет смысл. Условие неотрицательного a нужно, поскольку корень четной степени из отрицательного числа не извлекают. Если же значение m положительно, то a может быть и отрицательным, и нулевым, т.к. корень нечетной степени можно извлечь из любого действительного числа.

Здесь m/n означает несократимую дробь, m – любое целое число, а n – любое натуральное число.

Определение 5

Для любой обыкновенной сократимой дроби m·kn·k степень можно заменить на  amn.

Степень числа a с несократимым дробным показателем m/n – можно выразить в виде amn в следующих случаях: — для любых действительных a, целых положительных значений m и нечетных натуральных значений n. Пример: 253=253, (-5,1)27=(-5,1)-27, 0519=0519.

— для любых отличных от нуля действительных a, целых отрицательных значений m и нечетных значений n, например, 2-53=2-53, (-5,1)-27=(-5,1)-27

— для любых неотрицательных a, целых положительных значений m и четных n, например, 214=214, (5,1)32=(5,1)3, 0718=0718.

— для любых положительных a, целых отрицательных m и четных n, например, 2-14=2-14, (5,1)-32=(5,1)-3, .

В случае других значений степень с дробным показателем не определяется. Примеры таких степеней: -2116, -21232, 0-25.

Теперь объясним важность условия, о котором говорили выше: зачем заменять дробь с сократимым показателем на дробь с несократимым. Если бы мы этого не сделали бы, то получились бы такие ситуации, скажем, 6/10=3/5. Тогда должно быть верным (-1)610=-135, но -1610=(-1)610=110=11010=1, а (-1)35=(-1)35=-15=-155=-1.

Определение степени с дробным показателем, которое мы привели первым, удобнее применять на практике, чем второе, поэтому мы будем далее пользоваться именно им.

Определение 6

Таким образом, степень положительного числа a с дробным показателем m/n определяется как 0mn=0mn=0. В случае отрицательных a запись amn не имеет смысла. Степень нуля для положительных дробных показателей m/n определяется как 0mn=0mn=0, для отрицательных дробных показателей мы степень нуля не определяем.

В выводах отметим, что можно записать любой дробный показатель как в виде смешанного числа, так и в виде десятичной дроби: 51,7, 325-237.

Приказ о списании дебиторской или кредиторской задолженности с истекшим сроком давности

 51,7=51710=5710325-237=325-177=325-177   

Что такое действительные числа? В их множество входят как рациональные, так и иррациональные числа. Поэтому для того, чтобы понять, что такое степень с действительным показателем, нам надо определить степени с рациональными и иррациональными показателями. Про рациональные мы уже упоминали выше. Разберемся с иррациональными показателями пошагово.

Пример 5

Допустим, что у нас есть иррациональное число a и последовательность его десятичных приближений a0, a1, a2, …. Например, возьмем значение a=1,67175331…,тогда

a0=1,6, a1=1,67, a2=1,671, …,a0=1,67, a1=1,6717, a2=1,671753, …

 и так далее (при этом сами приближения являются рациональными числами).

Последовательности приближений мы можем поставить в соответствие последовательность степеней aa0, aa1, aa2, …. Если вспомнить, что мы рассказывали ранее о возведении чисел в рациональную степень, то мы можем сами подсчитать значения этих степеней.

Возьмем для примера a=3,  тогда aa0=31,67, aa1=31,6717, aa2=31,671753, … и т.д.

Последовательность степеней можно свести к числу, которое и будет значением степени c основанием a и иррациональным показателем  a. В итоге : степень с иррациональным показателем вида 31,67175331.. можно свести к числу 6,27.

Определение 7

Степень положительного числа a с иррациональным показателем a записывается как aa. Его значение – это предел последовательности aa0, aa1, aa2, …, где a0, a1, a2, … являются последовательными десятичными приближениями иррационального числа a. Степень с нулевым основанием можно определить и для положительных иррациональных показателей, при этом 0a=0 Так, 06=0,02133=0. А для отрицательных этого сделать нельзя, поскольку, например, значение 0-5, 0-2π не определено. Единица, возведенная в любую иррациональную степень, остается единицей, например, и 12, 15в2 и 1-5 будут равны 1.

Заключение

Своевременное списание просроченной или невозможной к взысканию кредиторской задолженности позволяет сохранить прозрачный учет на предприятии и показывает реальное финансовое положение компании.

https://www.youtube.com/watch?v=Wr4jlb7za-A

По результатам инвентаризации при наличии необходимых документов и в соответствии с законодательством кредиторскую задолженность можно списать. Но прежде нужно определить, прошел ли срок исковой давности. Если долг не востребован, то при составлении приказа и других документов нужно указать срок возникновения долгового обязательства. Но нужно помнить, что сумма остается на забалансовом учете, потому нужно проверять статус контрагента.

Оцените статью
Добавить комментарий